Главная » Рецепты прочие » Количество мезофильных аэробных и факультативно анаэробных микроорганизмов. Способ определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов в пищевых продуктах

Количество мезофильных аэробных и факультативно анаэробных микроорганизмов. Способ определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов в пищевых продуктах

В 1 пробе пива светлого непастеризованного– обнаружены БГКП;
- в 1 пробе рыбы х\к - превышение КМАФАнМ;
- в 3-х пробах воздуха из холодильной камеры - обнаружено превышение КОЕ плесеней – санитарная оценка «плохо»;
- в 4-х пробах рыбы вяленой обнаружено превышение КОЕ плесеней;
- в 4-х пробах рыбы вяленой обнаружено превышение КМАФАнМ;
- в 5-ти пробах питьевой воды (Вода артезианская разливаемая через сеть автоматов по розливу воды в тару потребителей) – превышение ОМЧ.

Определение количества мезофильных аэробных и факультативно анаэробных микроорганизмов (КМАФАнМ или общее микробное число, ОМЧ) относится к оценке численности группы санитарно-показательных микроорганизмов. В составе КМАФАнМ представлены различные таксономические группы микроорганизмов – бактерии, дрожжи, плесневые грибы. Их общая численность свидетельствуют о санитарно-гигиеническом состоянии продукта, степени его обсемененности микрофлорой. Оптимальная температура для роста КМАФАнМ 35-37оС (в аэробных условиях); температурная граница их роста - пределах 20-45оС. Мезофильные микроорганизмы обитают в организме теплокровных животных, а также выживаают в почве, воде, воздухе. Показатель КМАФАнМ характеризует общее содержание микроорганизмов в продукте. Его контроль на всех технологических этапах позволяет проследить, насколько "чистое" сырье поступает на производство, как меняется степень его "чистоты" после тепловой обработки и не претерпевает ли продукт повторного загрязнения после термообработки, во время фасовки и хранения. Показатель КМАФАнМ оценивается по численности мезофильных аэробных и факультативно анаэробных микроорганизмов, выросших в виде видимых колоний на плотной питательной среде после инкубации при 37оС в течение 24-48 часов.

КМАФАнМ – наиболее распространенный тест на микробную безопасность. Данный показатель применяется повсеместно для оценки качества продуктов, за исключением тех, в производстве которых используются специальные микробные культуры (например, пиво, квас, кисломолочные продукты и т.п.). Величина показателя КМАФАнМ зависит от многих факторов. Наиболее важные – режим термической обработки продукта, температурный режим в период его транспортировки, хранения и реализации, влажность продукта и относительная влажность воздуха, наличие кислорода, кислотность продукта и т.д. Увеличение КМАФАнМ свидетельствует о размножении микроорганизмов, в числе которых могут оказаться патогены и микроорганизмы, вызывающие порчу продукта (например, плесени).

Хотя общее количество бактерий КМАФАнМ не может непосредственно свидетельствовать о наличии или отсутствии патогенных бактерий в пищевых продуктах, этот показатель довольно широко используют, например, в молочной промышленности. Показатель КМАФАнМ (ОМЧ) характеризует санитарно-гигиенические режимы производства и условия хранения молочной продукции. Продукты, содержащие большое количество бактерий, даже непатогенных и не изменяющих их органолептические показатели, нельзя считать полноценными. Значительное содержание жизнеспособных бактериальных клеток в пищевых продуктах (за исключением тех, при производстве которых применяют закваски) свидетельствует либо о недостаточно эффективной термической обработке сырья, либо о плохой мойке оборудования, либо о неудовлетворительных условиях хранения продукта. Повышенная бактериальная обсемененность продукта свидетельствует также о его возможной порче.

Для потребителя показатель КМАФАнМ (ОМЧ) характеризует качество, свежесть и безопасность продуктов питания. В то же время, оценка качества продукта только по этому показателю имеет ряд недостатков. Во-первых, это только общая, количественная оценка микроорганизмов, поскольку при исследовании не учитываются патогенные, условно патогенные, психрофильные и термофильные микроорганизмы. Во-вторых, метод неприемлем для продуктов, содержащих технологическую и специфическую микрофлору.

Показатель КМАФАнМ позволяет также оценивать уровень санитарно-гигиенических условий социальной сферы на производстве, он позволяет выявлять нарушения режимов хранения и транспортировки продукта.

Изобретение относится к микробиологии, а именно к определению контаминации пищевых продуктов. Способ включает приготовление мясо-пептонного агара, разлив его в чашки Петри, отбор проб с пищевых продуктов, приготовление взвеси из навески пищевых продуктов, приготовление десятичных разведений исследуемой взвеси и размещение десятичных разведений исследуемой взвеси в чашки Петри, культивирование и подсчет числа колоний по формуле: x=a n ×10, n - степень разведения. Причем для приготовления десятичных разведений исследуемой взвеси используют 0,6-0,8%-ный раствор мясо-пептонного агара, при этом десятичные разведения исследуемой взвеси размещают на мембранные фильтры, находящиеся на поверхности мясо-пептонного агара в чашке Петри. Способ является оригинальным в решении, простым в осуществлении, информативным, дает статистически достоверные результаты; позволяет значительно сократить расход питательных сред, стерильной бактериологической посуды и времени проведения анализа; позволяет дать реальную количественную оценку содержания микроорганизмов, дающих сливной рост и образующих очень мелкие колонии, а также позволяет изучать внутрипопуляционные процессы с использованием световой микроскопии. 1 ил., 1 табл.

Изобретение относится к области ветеринарно-санитарной экспертизы, санитарии и микробиологии, а именно к определению контаминации пищевых продуктов и санитарно-гигиенического состояния объектов внешней среды.

Наиболее близким является способ определения количества микроорганизмов в колбасных изделиях и продуктах из мяса в воде. Известный способ определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов в 1 г продукта заключается в следующем: приготовление раствора для разведения и мясо-пептонного агара для посева; проведение анализа; учет результатов. 1. Недостатком существующего способа является то, что используемый раствор натрия хлорида (0,85%-ный) для разведения проб незабуферен и изотоничен только по отношению к клеткам млекопитающих, а также для проведения анализов используется большое количество питательной среды, бактериологической посуды и затрат рабочего времени. Кроме того, этот метод не позволяет дать реальную количественную оценку содержания микроорганизмов, дающих сливной рост и образующих очень мелкие (росинчатые) колонии (Методы общей бактериологии. Под ред. Ф.Герхарда и др. М.: «Мир», 1983, с.442-512).

Задачей изобретения является снижение количества используемой питательной среды, бактериологической посуды и затрат рабочего времени путем использования физиологического раствора полужидкого МПА вместо 0,85%-ного раствора натрия хлорида с последующим высевом капли разведенной испытуемой взвеси на поверхность мембранного фильтра.

Применение данного способа основано на том, что в качестве физиологического раствора для разведения используется физиологический раствор полужидкого мясо-пептонного агара (0,6-0,8%), состоящий из 1 дм 3 дистиллированной воды, 10 г пептона, 5 г натрия хлорида, 0,3 г безводного КН 2 РО 4 , 0,6 г безводного NaH 2 РО 4 и 0,6-0,8 г агар-агара; рН среды 7,0-7,2, капли которого наносятся на поверхность мембранных фильтров.

Использование в качестве раствора для разведения (0,6-0,8% мясо-пептонного полужидкого агара) с последующим высевом капли разведенной испытуемой взвеси на мембранный фильтр является оригинальным в решении, простым в осуществлении, информативным, дает статистически достоверные результаты; позволяет значительно сократить расход питательных сред, стерильной бактериологической посуды и времени проведения анализа; позволяет дать реальную количественную оценку содержания микроорганизмов, дающих сливной рост и образующих очень мелкие (росинчатые) колонии, а также позволяет изучать внутрипопуляционные процессы с использованием световой микроскопии.

Для проведения анализа отбирают пробы пищевых продуктов согласно действующим нормативным документам (ГОСТ 18963-73. Вода питьевая. Методы санитарно-бактериологического анализа. М., 1986; ГОСТ 9958-81. Изделия колбасные и продукты из мяса. М., 1982; ГОСТ 7702.2.1-95. Мясо птицы, субпродукты и полуфабрикаты птичьи. М., 1994).

Для приготовления взвеси навеску пищевых продуктов помещают в стерильную колбу (стакан) гомогенизатора и добавляют 0,85%-ный раствор натрия хлорида в четырехкратном количестве. Гомогенизацию проводят в электрическом смесителе. Вначале измельчают материал на кусочки замедленной скоростью вращения ножей, затем при 15000-20000 об/мин в течение 2,5 мин. Допускается при отсутствии гомогенизатора приготовление испытуемой взвеси в стерильной фарфоровой ступке путем растирания 20 г продукта с 2-3 г стерильного песка, постепенно приливая 80 см стерильного физиологического раствора. Для посевов на питательные среды стерильной градуированной пипеткой отбирают взвесь после 15 мин выдержки при комнатной температуре. 1 мл взвеси содержит 0,2 г продукта.

Мясо-пептонный агар разливают в стеклянные или пластмассовые чашки Петри (диаметром 9 см) и после того, как агар остынет, на его поверхности стерильным пинцетом размещают 5-6 мембранных фильтров. На схеме представлены основные этапы определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов предлагаемым способом.

0,6-0,8%-ный физиологический раствор полужидкого МПА разливают по 9 см 3 в стерильные пробирки. Затем в 9 см 3 физиологическом растворе полужидкого МПА готовят десятичные разведения исследуемой взвеси. Для этого в первую пробирку с 9 см 3 полужидкого агара вносят 1 см 3 исследуемой взвеси, из первой пробирки, тщательно перемешав 1 см 3 исследуемой взвеси, переносят во вторую и т.д. 0,1 мл (1 каплю) разведенной культуры наносят на мембранный фильтр, расположенный на МПА в чашке. В одну чашку можно поместить по 5-6 капель агара с различными разведениями культуры. Капли агара с разведенной культурой застывают через 10-15 мин. После этого чашки Петри культивируют в перевернутом виде в термостате при 37°С в течение 48 часов. Для определения количества жизнеспособных бактериальных клеток проводят подсчет колоний в каплях агара.

Для определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов число выросших колоний умножают на степень разведения культуры по формуле:

где x - количество мезофильных аэробных и факультативно-анаэробных микроорганизмов,

a - количество выросших колоний,

n - степень разведения.

Для количественной оценки содержания микроорганизмов, дающих сливной рост и образующих очень мелкие (росинчатые) колонии, а также для изучения внутрипопуляционных процессов с использованием световой микроскопии выросшие на мембранных фильтрах колонии фиксируют в парах 25%-ного глутарового альдегида 30-40 мин. Затем мембранный фильтр накладывают на поверхность предметного стекла и наносят на него несколько капель пропиленоксида. Мембранный фильтр становится прозрачным и в микроскоп или лупу можно считать даже очень мелкие (росинчатые) колонии и при необходимости проводить микрофотосъемку.

Способ поясняется на следующих конкретных примерах осуществления (см таблицу).

Условные обозначения: способ 1 - ближайший аналог

способ 2 - предлагаемый

Пример 1. Определение количества мезофильных аэробных и факультативно-анаэробных микроорганизмов в вареной колбасе. Определение количества мезофильных аэробных и факультативно-анаэробных микроорганизмов проводили двумя способами: способ 1 (прототип) - Для проведения анализа мясо-пептонный агар разливают в стеклянные или пластмассовые чашки Петри (диаметром 9 см). Отбор проб пищевых продуктов проводили согласно действующим нормативным документам (ГОСТ 9958-81. Изделия колбасные и продукты из мяса. М., 1982). Для приготовления взвеси навеску пищевых продуктов помещали в стерильную колбу (стакан) гомогенизатора и добавляли 0,85%-ный раствор натрия хлорида в четырехкратном количестве. Гомогенизацию проводили в электрическом смесителе. Вначале измельчали материал на кусочки замедленной скоростью вращения ножей, затем при 15000-20000 об/мин в течение 2,5 мин. Для посевов на питательные среды стерильной градуированной пипеткой отбирали взвесь после 15 мин выдержки при комнатной температуре. 1 мл взвеси содержит 0,2 г продукта. Готовили 3 разведения исследуемой взвеси в физиологическом растворе натрия хлорида: физиологический раствор натрия хлорида разливают по 9 см 3 в стерильные пробирки. Затем в 9 см 3 физиологическом растворе натрия хлорида готовят десятичные разведения исследуемой взвеси. Для этого в первую пробирку с 9 см 3 натрия хлорида вносят 1 см 3 исследуемой взвеси, из первой пробирки, тщательно перемешав 1 см 3 исследуемой взвеси, переносят во вторую и т.д. и затем из каждого разведения по 0,1 мл наносили в чашку Петри (всего 3 чашки). После этого чашки Петри культивировали в перевернутом виде в термостате при 37°С в течение 48 часов. Для определения количества жизнеспособных бактериальных клеток проводили подсчет колоний в каплях агара. Для определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов число выросших колоний умножали на степень разведения культуры по формуле:

где x - количество мезофильных аэробных и факультативно-анаэробных микроорганизмов,

a - количество выросших колоний,

n - степень разведения,

Способ 2 (предлагаемый) включает приготовление раствора для разведения (0,6-0,8%-ный физиологический раствор полужидкого МПА 0,6-0,8%-ный физиологический раствор полужидкого МПА) и мясо-пептонного агара для посева; проведение анализа; учет результатов.

Для проведения анализа мясо-пептонный агар разливают в стеклянные или пластмассовые чашки Петри (диаметром 9 см), после того как агар остынет, на его поверхности стерильным пинцетом размещают до 6 мембранных фильтров. Отбор проб пищевых продуктов проводили согласно действующим нормативным документам (ГОСТ 9958-81. Изделия колбасные и продукты из мяса. М., 1982). Для приготовления взвеси навеску пищевых продуктов помещали в стерильную колбу (стакан) гомогенизатора и добавляли 0,85%-ный раствор натрия хлорида в четырехкратном количестве. Гомогенизацию проводили в электрическом смесителе. Вначале измельчали материал на кусочки замедленной скоростью вращения ножей, затем при 15000-20000 об/мин в течение 2,5 мин. Для посевов на питательные среды стерильной градуированной пипеткой отбирали взвесь после 15 мин выдержки при комнатной температуре. 1 мл взвеси содержит 0,2 г продукта. Готовили 3 разведения исследуемой взвеси в физиологическом растворе МПА: 0,6-0,8%-ный физиологический раствор полужидкого МПА разливают по 9 см 3 в стерильные пробирки. Затем в 9 см 3 физиологического раствора полужидкого МПА готовят десятичные разведения исследуемой взвеси. Для этого в первую пробирку с 9 см 3 полужидкого агара вносят 1 см 3 исследуемой взвеси, из первой пробирки, тщательно перемешав 1 см 3 исследуемой взвеси, переносят во вторую и т.д. и затем из каждого разведения по 0,1 мл наносили на поверхность мембранного фильтра, расположенного на МПА в чашке Петри. Причем 3 разведения размещали в одной чашке Петри. После этого чашки Петри культивировали в перевернутом виде в термостате при 37°С в течение 48 часов. Для определения количества жизнеспособных бактериальных клеток проводили подсчет колоний в каплях агара. Для определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов число выросших колоний умножали на степень разведения культуры по формуле:

где x - количество мезофильных аэробных и факультативно-анаэробных микроорганизмов,

a - количество выросших колоний,

n - степень разведения.

Количество мезофильных аэробных и факультативно-анаэробных микроорганизмов, определенное по способу 1 - (9×10 2) и по способу 2 - (10×10 2), существенно не отличалось.

Пример 2. Определение количества мезофильных аэробных и факультативно-анаэробных микроорганизмов в мясе. Определение количества мезофильных аэробных и факультативно-анаэробных микроорганизмов проводили двумя способами: способ 1 (прототип) - Для проведения анализа мясо-пептонный агар разливают в стеклянные или пластмассовые чашки Петри (диаметром 9 см). Отбор проб пищевых продуктов проводили согласно действующим нормативным документам (ГОСТ 9958-81. Изделия колбасные и продукты из мяса. М., 1982). Для приготовления взвеси навеску пищевых продуктов помещали в стерильную колбу (стакан) гомогенизатора и добавляли 0,85%-ный раствор натрия хлорида в четырехкратном количестве. Гомогенизацию проводили в электрическом смесителе. Вначале измельчали материал на кусочки замедленной скоростью вращения ножей, затем при 15000-20000 об/мин в течение 2,5 мин. Для посевов на питательные среды стерильной градуированной пипеткой отбирали взвесь после 15 мин выдержки при комнатной температуре. 1 мл взвеси содержит 0,2 г продукта. Готовили 6 разведений исследуемой взвеси в физиологическом растворе натрия хлорида: физиологический раствор натрия хлорида разливают по 9 см 3 в стерильные пробирки. Затем в 9 см 3 физиологическом растворе натрия хлорида готовят десятичные разведения исследуемой взвеси. Для этого в первую пробирку с 9 см 3 натрия хлорида вносят 1 см 3 исследуемой взвеси, из первой пробирки, тщательно перемешав 1 см 3 исследуемой взвеси, переносят во вторую и т.д. и затем из каждого разведения по 0,1 мл наносили в чашку Петри (всего 6 чашек). После этого чашки Петри культивировали в перевернутом виде в термостате при 37°С в течение 48 часов. Для определения количества жизнеспособных бактериальных клеток проводили подсчет колоний в каплях агара. Для определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов число выросших колоний умножали на степень разведения культуры по формуле:

где x - количество мезофильных аэробных и факультативно-анаэробных микроорганизмов,

a - количество выросших колоний,

n - степень разведения.

Способ 2 (предлагаемый), включающий приготовление раствора для разведения (0,6-0,8%-ный физиологический раствор полужидкого МПА и 0,6-0,8%-ный физиологический раствор полужидкого МПА) и мясо-пептонного агара для посева; проведение анализа; учет результатов.

Для проведения анализа мясо-пептонный агар разливают в стеклянные или пластмассовые чашки Петри (диаметром 9 см), и после того, как агар остынет, на его поверхности стерильным пинцетом размещают 5-6 мембранных фильтров. Отбор проб пищевых продуктов проводили согласно действующим нормативным документам (ГОСТ 9958-81. Изделия колбасные и продукты из мяса. М., 1982). Для приготовления взвеси навеску пищевых продуктов помещали в стерильную колбу (стакан) гомогенизатора и добавляли 0,85%-ный раствор натрия хлорида в четырехкратном количестве. Гомогенизацию проводили в электрическом смесителе. Вначале измельчали материал на кусочки замедленной скоростью вращения ножей, затем при 15000-20000 об/мин в течение 2,5 мин. Для посевов на питательные среды стерильной градуированной пипеткой отбирали взвесь после 15 мин выдержки при комнатной температуре. 1 мл взвеси содержит 0,2 г продукта. Готовили 6 разведений исследуемой взвеси в физиологическом растворе МПА: 0,6-0,8%-ный физиологический раствор полужидкого МПА разливают по 9 см 3 в стерильные пробирки. Затем в 9 см 3 физиологическом растворе полужидкого МПА готовят десятичные разведения исследуемой взвеси. Для этого в первую пробирку с 9 см 3 полужидкого агара вносят 1 см 3 исследуемой взвеси, из первой пробирки, тщательно перемешав 1 см 3 исследуемой взвеси, переносят во вторую и т.д. и затем из каждого разведения по 0,1 мл наносили на поверхность мембранного фильтра, расположенного на МПА в чашке Петри. Причем 6 разведений размещали в двух чашках Петри. После этого чашки Петри культивировали в перевернутом виде в термостате при 37°С в течение 48 часов. Для определения количества жизнеспособных бактериальных клеток проводили подсчет колоний в каплях агара. Для определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов число выросших колоний умножали на степень разведения культуры по формуле:

где x - количество мезофильных аэробных и факультативно-анаэробных микроорганизмов,

a - количество выросших колоний,

n - степень разведения.

После культивирования в чашках Петри при 37°С в течение 48 ч количество мезофильных аэробных и факультативно-анаэробных микроорганизмов, определенное по способу 1 - (8×10 5) и по способу 2 - (7×10 5) существенно не отличалось.

Из приведенных примеров видно, что при сравнительной оценке двух методов число КОЕ, определенное по предлагаемому способу, существенно не отличалось от такового при определении общепринятым методом. В тоже время разработанный метод имеет ряд преимуществ. Так, на определение количества жизнеспособных клеток по пяти видам образцов составили: по существующему - 98 мин; по предлагаемому методу - 48 мин. Затраты питательной среды составили по прототипу - 420 мл; по предлагаемому способу - 135 мл. Количество чашек Петри составило по прототипу - 28 штук; по предлагаемому методу - 9 штук.

Согласно техническому регламенту и ГОСТу требования по количеству бактерий или КМАФАнМ (количеству мезофильных аэробных и факультативно анаэробных микроорганизмов) следующие:

Высший сорт – до 100 тыс. КОЕ /см 3 ;

Первый сорт – до 500 тыс. КОЕ /см 3 ;

Второй сорт – от 500 до 4 000 тыс. КОЕ /см 3 ;

КОЕ – это колониеобразующие единицы, то есть, живые клетки, из которых на питательной среде может вырасти колония.

Определение КМАФАнМ проводят следующими методами:

1. Классический (прямой ) метод : посев на плотные питательные среды.

2. Редуктазная проба – относится к экспресс-методам. Эта проба основана на том, что бактерии, развиваясь в молоке, выделяют фермент редуктазу, способный обесцвечивать органические красители, такие как, резазурин. Чем больше бактерий в молоке, тем больше они выделяют фермента, тем быстрее идет обесцвечивание молока.

3. По изменению электропроводности при развитии микроорганизмов на питательной среде на приборе «Бак Трак 4300».

Определение количества бактерий в молоке по редуктазной

Пробе с резазурином

Метод анализа относится к микробиологическим. Поэтому приотборе пробнадо соблюдать правила отбора проб для микробиологических анализов (ГОСТ Р 53430).

Ход анализа. В стерильную пробирку стерильной пипеткой отмерить 1 см 3 рабочего 0,014 % раствора резазурина, добавить стерильной пипеткой 10 см 3 молока. Закрыть пробирку стерильной резиновой пробкой, перемешать трехкратным переворачиванием и поставить в редуктазник при температуре 37+ 1 о С. Отсчет времени начинается с момента постановки пробирок в редуктазник.

Предварительную оценку результатов делают через 20 минут, окончательную - через 1,0 час, затем через 1,5 часа.

Если через 20 минут молоко обесцветилось, то в таком молоке микроорганизмов более 20 млн/см 3 , это 4 класс по редуктазной пробе, молоко приемке не подлежит, анализ на этом прекращают. Если молоко имеет какой-либо цвет, анализ продолжают.

Если через час молоко серо-сиреневого или сиреневого с серым оттенком цвета, то микроорганизмов в таком молоке менее 500 тыс./см 3 (1 класс по редуктазной пробе, первый сорт молока по ГОСТу).

Если через час молоко сиреневого цвета с розовым оттенком или розового цвета, то микроорганизмов в таком молоке от 500 тыс./см 3 . до 4 млн/см 3 (2 класс по редуктазной пробе, второй сорт молока по ГОСТу).

Если через час молоко белое или бледно-розовое, то микроорганизмов в таком молоке от 4 до 20 млн/см 3 (3 класс по редуктазной пробе, молоко приемке не подлежит).

Розовое кольцо на поверхности во внимание не принимают.

Если при выдержке пробирок в редуктазнике еще в течение получаса молоко по-прежнему остается серо-сиреневого или сиреневого цвета, то бактерий в таком молоке до 300 тыс./см 3 .

Характер микрофлоры сырого молока оценивается по: бродильной, сычужно-бродильной пробе и пробе на наличие мяслянокислых бактерий.

Бродильная проба

Проводится для определения характера микрофлоры сырого молока и качества молочного белка при кислотном свертывании (в основном в сыроделии).

Ход анализа. В чистые пробирки, ополоснутые 2-3 раза исследуемым молоком, наливают по 20 мл молока, закрывают ватными пробками и помещают в редуктазник при температуре 38+ 1 о С.

Через 12 часов хорошее молоко остается жидким или появляются первые признаки свертывания. Молоко низкого качества дает вспученный сгусток. Окончательный результат получают через сутки.

1 класс – сгусток плотный, ровный, без отделения сыворотки. На сгустке допускаются незначительные полоски. Микрофлора - молочнокислая, качество белка высокое.

2 класс – Сгусток с полосками и пустотами, заполненными сывороткой, слабое отделение сыворотки, мелкозернистая структура сгустка. Микрофлора представлена молочнокислыми микроорганизмами с небольшой примесью газообразующей микрофлоры (в основном дрожжи). Качество молочного белка удовлетворительное.

3 класс – Сгусток сжался с обильным выделением зеленоватой или беловатой сыворотки, крупнозернистый, в сгустке пузырьки газа. Микрофлора - в основном газообразующие бактерии. При стянутом сгустке могут быть гнилостные микроорганизмы. Качество молочного белка – плохое.

4 класс – Сгусток разорван, вспучен, пронизан пузырьками газа. Микрофлора - в основном газообразующая, присутствуют маслянокислые бактерии, могут быть гнилостные. Качество молочного белка очень плохое.

Сычужно-бродильная проба

Проводится для определения характера микрофлоры сырого молока и качества молочного белка при сычужном свертывании (в основном в сыроделии). По техническому регламенту молоко для производства сыра должно иметьI или II класс по сычужно-бродильной пробе.

Ход анализа. В большие пробирки наливают приблизительно по 30 см 3 молока, вносят 1 см 3 0,5 %-ного раствора сычужного фермента (0,5 г сычужного фермента растворить в 100 см 3 воды с температурой 30 о С), перемешивают и ставят в термостат с температурой 37-40 о С.

Доброкачественное молоко свертывается в течение 20 минут, а через 12 часов дает плотный сгусток (сырок) с прозрачной сывороткой. Результаты сычужно-бродильной пробы оценивают в соответствии с таблицей 5.

Таблица 5 –Оценка результатов сычужно-бродильной пробы

Задание 2:

1. Подогреть молоко до 30-35 о С. Определить органолептические показатели молока и группу чистоты.

2. Охладить молоко до 20 о С, определить титруемую и активную кислотность молока. Сравнить полученные значения со значениями, приведенными в таблице 6.

3. Выразить кислотность в граммах молочной кислоты. Записать результаты в таблицу 9.

Молоко и молочные продукты являются ценными продуктами питания животного происхождения. Однако следует помнить, что молоко, полученное от больных животных, может являться источником заражения человека зооантропонозными (общими для человека и животных) болезнями, кроме того, при нарушении санитарных правил и технологии получения, переработки и хранения, молоко может стать причиной пищевых токсикозов и токсикоинфекций.

Источник первичного обсеменения молочных продуктов микроорганизмами - это молоко - сырьё. Микробы проникают в молоко из внешней среды через выводные протоки, молочную цистерну и сосковый канал. Неспецифическую микрофлору молока составляют бактерии, дрожжи, плесневые грибы. Обсеменение молока микроорганизмами происходит уже в процессе дойки и интенсивность его зависит от уровня гигиены на ферме, качества мойки и дезинфекции доильного оборудования. В большом количестве микробы содержатся на поверхности кожного покрова животного. Микробы на поверхность кожи попадают из корма, подстилки, навоза, воздуха.

Плохие условия хранения молока так же способствуют нарастанию в нем микрофлоры. Свежевыдоенное, парное молоко обладает бактерицидностью, т.е. способностью задерживать размножение попадающих в молоко бактерий и даже убивать их. Чтобы сохранить бактерицидные свойства парного молока, его охлаждают. При температуре +30°С бактерицидность сохраняется в течение 3-х часов, при +15°С - около 8 часов, при +10°С - около 24 часов. Молоко охлаждают сразу же после доения, и до отправки его хранят при температуре от +2 до +6°С. В процессе хранения исчезают антимикробные свойства молока, и при несоблюдении правил хранения в нём создаются условия для развития нежелательной микрофлоры, в результате чего продукт портится.

Патогенные микроорганизмы могут попадать в молоко в процессе его получения и транспортировки из окружающей среды или могут содержаться в молоке больных животных. Особенно много различных микробов находится в молоке животных, больных маститом (стафилококки, стрептококки и др.). Микроорганизмы могут попадать в молоко через воздух и при контакте больных животных туберкулезом, сальмонеллезом и т.д. И поэтому, наряду с белком, жиром и кислотностью, бакобсеменённость (или КМАФАнМ) - один из важнейших показателей качества и безопасности молока.

Хорошее молоко имеет, соответственно, низкую бакобсеменённость. Однако надо помнить, что сырое молоко не может иметь нулевую бакобсемененность. Молоко - живой продукт, который получен от животных, а бактерии - неотъемлемые спутники любого живого организма, и, как следствие продуктов его жизнедеятельности. Молоко, содержащее большое количество бактерий, даже непатогенных и не изменяющих органолептические показатели, нельзя считать полноценным. Повышенная бактериальная обсемененность продукта свидетельствует о размножении микроорганизмов, в числе которых могут оказаться патогенные, вызывающие порчу продукта. Высокое содержание микроорганизмов так же может вызвать пищевое отравление с признаками диареи и гастроэнтерита.

Требования к молоку сырому по бактериальной обсемененности установлены нормативными документами РФ, и Техническими регламентами Таможенного союза. Бакобсемененность молока - количественное содержание бактерий в 1 см³ сырого молока. Микробиологические показатели молока по ОМЧ (общее микробное число) или КМАФАнМ (количество мезофильных аэробных и факультативно анаэробных микроорганизмов) должны соответствовать требованиям Технического регламента Таможенного союза «О безопасности молока и молочной продукции» (ТР ТС 033/2013) от 09.10.2013 и составлять не более 5,0×10 5 (500000) КОЕ/см³.

Бактериальную обсемененность заготовляемого молока определяют с помощью редуктазной пробы. Метод основан на том, что фермент редуктаза, выделяемый микрофлорой молока, обесцвечивает метиленовый синий краситель. Установлена связь между количеством микрофлоры и скоростью обесцвечивания молока, в которое добавлен метиленовый синий. Чем выше скорость обесцвечивания, тем большее количество микроорганизмов находится в молоке и, следовательно, хуже его качество.

В испытательных лабораториях согласно ГОСТ 32901-2014 «Молоко и молочная продукция. Методы микробиологического анализа», для определения бактериальной обсемененности молока сырого в качестве арбитражного метода используется стандартный чашечный метод посева определенных разведений исходного молока на твердую питательную среду с последующим культивированием в течение 72 ч при 30±1°С и подсчётом колоний образующих единиц (КОЕ) мезофильных аэробных и факультативно-анаэробных микроорганизмов (КМАФАнМ).

Таким образом, определение КМАФАнМ в молоке свидетельствует о санитарно-гигиеническом состоянии продукта, степени его обсемененности микрофлорой, позволяет судить о состоянии здоровья животного, состоянии вымени, об эффективности мойки и дезинфекции оборудования, о соблюдении санитарно-гигиенических условий производства и правил личной гигиены работников, об условиях хранения, транспортирования готовой продукции. Поэтому этот показатель нормируется для всех молочных продуктов за исключением продуктов, вырабатываемых с использованием технически полезной микрофлоры (микрофлоры заквасок).

Соматические клетки являются постоянными составными элементами молока и представлены: эпителиальными клетками слизистой оболочки молочных желез, альвеол и мелких молочных ходов, представляющие собой крупные округлые клетки (размером от 12 до 100 мкм и более) обычно виде групп или пластов, реже в виде единичных клеток; дегенерированными эпителиальными клетками неопределенной формы разрушенной структуры; форменными элементами крови: лейкоцитами (в основном лимфоцитами, нейтрофилами, эозинофилами и др.) и эритроцитами. Известно, что соматические клетки в выдоенном молоке не размножаются (в отличие от бактерий).

Морфолого-цитологический состав и количественное содержание соматических клеток в молоке каждого животного сильно варьирует в зависимости от различных факторов: возраста животного (в молоке первотелок соматических клеток меньше, чем у коров с большим числом лактаций), периода лактации (в молоке здоровой коровы минимальное количество соматических клеток наблюдается на 2 - 6 мес. лактации, а повышенное - в молозивный период, в конце лактации и в период запуска), породы и индивидуальных особенностей животного, а также состояния здоровья животных (особенно от состояния вымени), уровня и режимов кормления и др.

Содержание соматических клеток является важным показателем безопасности молока и показывает его пригодность для переработки. Присутствие в молоке большого количества соматических клеток ведет к серьезному снижению его качественных показателей: теряется биологическая полноценность, ухудшаются технологические свойства при переработке. Помимо того, снижается кислотность молока, отмечаются потери жира, казеина, лактозы. Молоко становится менее термоустойчивым, хуже свертывается сычужным ферментом, замедляется развитие полезных молочнокислых бактерий. Из такого молока невозможно изготовить качественные продукты (сыр, творог, йогурт, кефир и др.). Соматические клетки влияют не только на качество молока, но и на продуктивность коров.

С 1 июля 2017 года содержание в сыром молоке соматических клеток должно быть не более 7,5×10 5 в 1 см3, при этом, для молока сырого, предназначенного для производства детского питания, сыров и стерилизованного молока, - не более 5×10 5 клеток в 1 см3.

Очень важно, что содержание соматических клеток в молоке можно легко и быстро определить. Для выявления в заготовляемом сырье примеси маститного молока используются прямые и косвенные методы, основанные на установлении количества соматических клеток. К косвенным методам определения количества соматических клеток в молоке относятся методы их выявления при взаимодействии с рядом реагентов. В настоящее время определение количества соматических клеток в молоке регламентируется ГОСТ 23453-2014 «Молоко сырое. Методы определения соматических клеток» и проводится с использованием диагностических препаратов типа «Мастоприм» визуальным способом и с применением вискозиметра. Стандарт разработан ГНУ «ВНИИМС Россельхозакадемии».

Метод основан на воздействии сульфанола (поверхностно-активного вещества, входящего в состав препарата "Мастоприм") на клеточную оболочку соматических клеток, приводящем к нарушению ее целостности и выходу содержимого клеток во внешнюю среду. При этом изменяется вязкость (консистенция), что фиксируется визуально или вискозиметром. Для анализа используются пластинки ПМК-1 с последующей визуальной оценкой или вискозиметры капиллярного типа, откалиброванные производителем прибора на определение количества соматических клеток в сыром молоке.

Визуальная оценка крайне проста, однако не дает возможности получить конкретные цифровые показатели количества соматических клеток в молоке. При визуальной оценке мы можем определить только границы безопасности, согласно инструкции реагента.

В нашей лаборатории содержание соматических клеток в молоке определяется с применением вискозиметра «Соматос-В.2К». Ход определения состоит в следующем: 5 мл раствора препарата "Мастоприм" и 10 мл анализируемого сырого молока отбирают пипетками и вносят в колбу вискозиметра. Анализируемое сырое молоко перед отбором пробы необходимо тщательно перемешать и при необходимости очистить от механических примесей. Смесь анализируемого сырого молока с раствором препарата "Мастоприм" в колбе вискозиметра перемешивают в течение (30±10) с в ручном или автоматическом режиме. По окончании перемешивания определяют количество соматических клеток в анализируемом сыром молоке по времени вытекания смеси из капилляра. Продолжительность вытекания определяется вязкостью смеси сырого молока с раствором препарата "Мастоприм", которая коррелирует с исходным содержанием в нем соматических клеток. Диапазон определения количества соматических клеток при использовании капиллярных вискозиметров составляет от 90 до 1500 тыс. в 1 см3 сырого молока и продолжительность вытекания смеси из капилляра колеблется от 12 до 58 с.

Показания вискозиметра менее 90 тыс. в 1 см3 говорит о фальсификации сырого молока как химическими веществами, так и путем воздействия температурой:

Добавление в молоко перекиси водорода, мочевины, соды и других веществ, используемых для фальсификации тех или иных показателей молока-сырья, приводит к прямо пропорциональному снижению значений вискозиметра в зависимости от их концентрации;

Любое нагревание молока до температур термизации или пастеризации приводит к сбою показаний прибора, и вискозиметр показывает значения менее 90 тыс. клеток в 1 см3 молока независимо от их истинного содержания.

Эти особенности необходимо учитывать при анализе получаемых результатов.

Содержание соматических клеток - важнейший косвенный показатель здоровья вымени, так как при воспалительном процессе в молоке резко увеличивается количество клеток крови, в частности лейкоцитов и нейтрофильных гранулоцитов. Воспалительные процессы являются причиной развития субклинических маститов. При субклинических маститах в вымени не обнаруживаются видимые симптомы воспаления, однако содержание соматических клеток в молоке повышается. Таким образом, изменения в химическом составе молока часто являются доказательством наличия того же мастита. Наиболее часто возбудителем субклинического мастита являются стрептококки и стафилококки. Субклинические маститы могут долго продолжаться, нанося постоянный вред как здоровью вымени, так и хозяйству (уменьшение продуктивности, снижение цены на молоко), а также могут переходить в клинические маститы.

Существуют ещё и другие факторы, влияющие на содержание соматических клеток в молоке, например: ошибки при доении, дефекты доильного оборудования, недостаточная гигиена, погрешности содержания, ошибки в кормлении и т.д.

В заключение хочется представить некоторые цифры: с начала этого года ветлабораториями области происследовано более 1500 проб сырого коровьего молока от хозяйств, из них забраковать по показателям "КМАФАнМ" и "Содержание соматических клеток" пришлось всего 7 проб. Это говорит о хорошем качестве молока, реализуемого сельхозтоваропроизводителями нашей области.

Динамичное развитие экономики пищевой отрасли невозможно без повышения конкурентоспособности товаров и услуг. Определяющим для потребителей является качество продукции. Производители должны знать и изучать требования, предъявляемые к качеству выпускаемых ими товаров, уметь количественно и качественно анализировать и оценивать их показатели.

В нормативно-технической документации контролируемые показатели качества разделяют на 3 группы: органолептические, физико-химические и микробиологические.

Микробиологические методы исследования устанавливают степень обсеменения продукта микроорганизмами и позволяют выявить наступающие изменения качества продукта, его порчу.

КМАФАнМ (количество мезофильных аэробных и факультативно анаэробных микроорганизмов) – наиболее распространенный тест на микробную безопасность. Данный показатель применяется повсеместно для оценки качества продуктов, за исключением тех, в производстве которых используются специальные микробные культуры (например, пиво, квас, кисломолочные продукты и т.п.). В составе КМАФАнМ представлены различные таксономические группы микроорганизмов – бактерии, дрожжи, плесневые грибы. Их общая численность свидетельствуют о санитарно-гигиеническом состоянии продукта, степени его обсемененности микрофлорой.

Продукты, содержащие большое количество бактерий, даже непатогенных и не изменяющих их органолептические показатели, нельзя считать полноценными. Значительное содержание жизнеспособных бактериальных клеток в пищевых продуктах (за исключением тех, при производстве которых применяют закваски) свидетельствует либо о недостаточно эффективной термической обработке сырья, либо о плохой мойке оборудования, либо о неудовлетворительных условиях хранения продукта. Повышенная бактериальная обсемененность продукта свидетельствует также о его возможной порче.

Для потребителя показатель КМАФАнМ характеризует качество, свежесть и безопасность продуктов питания. В то же время, оценка качества продукта только по этому показателю имеет ряд недостатков. Во-первых, это только общая, количественная оценка микроорганизмов, поскольку при исследовании не учитываются патогенные, условно патогенные, психрофильные и термофильные микроорганизмы. Во-вторых, метод неприемлем для продуктов, содержащих технологическую и специфическую микрофлору.

Показатель КМАФАнМ позволяет оценивать уровень санитарно-гигиенических условий социальной сферы на производстве, он позволяет выявлять нарушения режимов хранения и транспортировки продукта.





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта