Главная » Гости на пороге » Каротиноиды - это растительные пигменты, придающие красный, оранжевый и желтый цвет овощам и фруктам. Источники каротиноидов

Каротиноиды - это растительные пигменты, придающие красный, оранжевый и желтый цвет овощам и фруктам. Источники каротиноидов

На сегодняшний день ученые, исследующие фитонутриенты, выявили среди них более 600 разных каротиноидов, которые являются самыми распространёнными пигментами в природе. В окружающей нас природе за один год синтезируется более 100 миллионов тонн фитонутриентов (биологически активных веществ) — это более 3 тонн за одну секунду. Живые существа не синтезируют , а накапливают их вместе с потреблением пищи растительного происхождения.

Роль каротиноидов в растениях

Ключевая роль каротиноидов в растениях заключается в том, что они защищают органические молекулы от процессов разрушения при окислении кислородом, а также трансформируют световую энергию в реакционные центры пигментов, где эта энергия преобразуется в форму пригодную для синтеза различных соединений.

Роль каротиноидов в живых организмах

Ключевая роль каротиноидов в живых организмах заключается в том, что они защищают клетки организма от негативного действия свободных радикалов. Другим достоинством этих биологически активных веществ является тот факт, что они способны накапливаться в определенных тканях организма создавая, таким образом, защитный эффект. Например, такой каротиноид как лютеин, накапливается в глазной сетчатке человека – при этом уменьшается риск развития дистрофии так называемого желтого пятна (подобное заболевание сетчатки наблюдается у пожилых людей). У людей преклонного возраста данная болезнь является причиной потери зрения. Также характеризуются тем, что они способны укреплять защиту организма от рака кожи, а ещё от них зависит уровень защищённости простаты от возникновения злокачественной опухоли. Большое значение каротиноидов заключается в их А-провитаминной активности. Известно, что организм человека не может самостоятельно синтезировать жизненно необходимый витамин А, а усваивает его вместе с пищей растительного происхождения. С другой стороны данный витамин не образуется и в растительных тканях. Витамин А синтезируется только путем преобразования провитамин-А активных каротиноидов. Провитамин-А активные каротиноиды это — b-каротин, a-каротин, 3,4-дигидро-b-каротин, криптоксантин, кантаксантин, астаксантин, и др.). В организме человека способствуют поддержанию водного баланса, транспорту кальция через мембраны, работу обонятельных рецепторов и хеморецепторов, образовывают комплексы с протеинами. Организм человека использует как запас кислорода в нейрональной дыхательной цепочке.

Разновидности каротиноидов

Представляют собой группу природных пигментов, все члены которой обладают очень близкой структурой. В зависимости от цветовой пигментации и строения каротиноиды разделяются на 2 группы. К первой группе относятся каротины , ко второй – ксантофиллы . Каротины характеризуются тем, что имеют оранжевый цвет и являются чистыми углеводородами (в их структуре нет атомов кислорода). Ксантофиллы в своем составе имеют кислородсодержащие функциональные группы и окрашены в цвета от желтого до красного.

К наиболее популярным каротиноидам можно отнести: Альфа-каротин, Бета-каротин, Бета-криптоксантин, Лютеин, Ликопин.


Альфа-каротин содержится в оранжевых овощах (морковь, тыква). В организме человека альфа-каротин, бета-каротин и бета-криптоксантин синтезируется в витамин А. Данные биологически активные вещества являются провитаминами. Рекомендованная норма потребления альфа-каротина в сутки составляет 518 мкг. Низкий уровень его в крови связан с развитием сердечно-сосудистых заболеваний.


Бета-каротин защищает клетки нашего организма от негативного действия свободных радикалов. Поэтому он считается мощным антиоксидантом, повышает защитную функцию иммунной системы. Содержится бета-каротин в овощах и фруктах оранжевого и желтого цветов (картофель, дыня, морковь). Рекомендованная норма потребления бета-каротина в сутки составляет 3787 мкг.

Бета-криптоксантин уменьшает риск развития воспалительных заболеваний. К числу таких заболеваний можно отнести ревматоидный артрит. Источником бета-криптоксантинов являются мандарины, апельсины, тыква, перец.

Лютеин защищает сетчатку глаза от вредного воздействия ультрафиолетовой части солнечного света.

Рекомендованная норма потребления лютеина в сутки составляет от 6 до 15. Употребление рекомендованной суточной дозы лютеина снижает риск развития катаракты на 20-25% и приводит к уменьшению риска вырождения желтого пятна (небольшая область сетчатки глаза) на 43%. Источником лютеина являются темно-зеленые листовые овощи (шпинат, капуста, морковь, кабачки).


Ликопин
нормализует холестериновый обмен, подавляет болезненную кишечную микрофлору, предотвращает развитие склероза, способствует снижению веса. Источник ликопина – помидоры, томатная паста, арбуз.

Где содержатся каротиноиды

Содержатся в темно-зеленых листьях растений, лепестках цветов, пыльце цветковых растений, плодах цитрусовых, моркови, тыкве, томатах, сладком перце. Источником каротиноидов также есть шиповник, рябина, красное пальмовое масло, клубни батата, водоросли, зерна и плоды растений.

Будьте здоровы и жизнерадостны!

Энциклопедия «Биология»

Каротиноиды

Природные пигменты жёлтого, оранжевого или красного цвета, синтезируемые бактериями, грибами и зелёными растениями. Делятся на каротины и ксантофиллы. Каротины по химической природе представляют собой ненасыщенные углеводороды, молекулы которых построены из 40 атомов углерода. Богаты каротинами листья шпината, корнеплоды моркови, плоды шиповника. Животные обычно не синтезируют каротины и получают их с пищей, накапливая в жировой ткани, яичном желтке, молоке и др. Из каротина (провитамина А) в животном организме образуется витамин А. Ксантофиллы – окисленные производные каротинов (спирты, альдегиды и т. п.). Содержатся в различных органах растений и в клетках многих микроорганизмов. Каротиноиды служат дополнительными пигментами при фотосинтезе, участвуют в фотозависимых реакциях растений (напр., в тропизмах), окрашивают (вместе с другими пигментами) осеннюю листву растений.

Энциклопедический словарь

Каротиноиды

(от лат. carota - морковь и греч. eidos - вид), группа природных пигментов желтого или оранжевого цвета. По химической природе - изопреноиды; ненасыщенные углеводороды (каротины) или их окисленные производные (ксантофиллы). Синтезируются некоторыми микроорганизмами и всеми растениями, в клетках которых участвуют в фотосинтезе и процессах, связанных с поглощением света (фототаксисы, фототропизмы и др.). Обусловливают окраску плодов, осенней листвы, колоний ряда микробов. В организме животных и человека из каротинов, поступающих с пищей, образуется витамин А.


Каротиноиды - жирорастворимые пигменты желтого, оранжевого, красного цвета - присутствуют в хлоропластах всех растений. Они входят также в состав хромопластов в незеленых частях растений, например в корнеплодах моркови, от латинского наименования которой (Daucus carota L.) они и получили свое название. В зеленых листьях каротиноиды обычно незаметны из-за присутствия хлорофилла, но осенью, когда хлорофилл разрушается, именно каротиноиды придают листьям характерную желтую и оранжевую окраску. Каротиноиды синтезируются также бактериями и грибами, но не животными организмами. В настоящее время известно около 400 пигментов, относящихся к этой группе.

Структура и свойства. Элементарный состав каротиноидов установил Вильштеттер. С 1920 по 1930 г. была определена структура основных пигментов этой группы. Искусственный синтез ряда каротиноидов впервые осуществлен в 1950 г. в лаборатории П. Каррера. К каротиноидам относятся три группы соединений: 1) оранжевые или красные пигменты каротины (С 40 Н 56); 2) желтые ксантофиллы (С 4 оН 56 О 2 и С 40 H 51 O 4); 3) каротиноидные кислоты - продукты окисления каротиноидов с укороченной цепочкой и карбоксильными группами (например, C 20 H 24 O 2 - кроцетин, имеющий две карбоксильные группы).

Каротины и ксантофиллы хорошо растворимы в хлороформе, бензоле, сероуглероде, ацетоне. Каротины легко растворимы в петролейном и диэтиловом эфирах, но почти нерастворимы в метаноле и этаноле. Ксантофиллы хорошо растворимы в спиртах и значительно хуже в петролейном эфире.

Все каротиноиды - полиеновые соединения. Каротиноиды первых двух групп состоят из восьми остатков изопрена, которые образуют цепь конъюгированных двойных связей. Каротиноиды могут быть ациклическими (алифатическими), моно- и бициклическими. Циклы на концах молекул каротиноидов являются производными ионона (рис. 1).

Рис.1. Структурные формулы каротиноидов и последовательность их превращений

Примером ациклического каротиноида может служить ликопин (С 40 Н 56) - основной каротин некоторых плодов (в частности, томатов) и пурпурных бактерий.

Каротин (рис. 1) имеет два β-иононовых кольца (двойная связь между С 5 и С 6). При гидролизе β-каротина по центральной двойной связи образуются две молекулы витамина А (ретинола). α-Каротин отличается от β-каротина тем, что у него одно кольцо β-иононовое, а второе - Ј-иононовое (двойная связь между С 4 и С 5).

Ксантофилл лютеин - производное a-каротина, а зеаксантин - β-каротина. Эти ксантофиллы имеют по одной гидроксильной группе в каждом иононовом кольце. Дополнительное включение в молекулу зеаксантина двух атомов кислорода по двойным связям С 5 -С 6 (эпоксидные группы) приводит к образованию виолаксантина. Название

«виолаксантин» связано с выделением этого соединения из лепестков желтых анютиных глазок (Viola tricolor). Зеаксантин впервые получен из зерновок кукурузы (Zea mays). Лютеин (от лат. luteus - желтый) содержится, в частности, в желтке куриных яиц. К наиболее окисленным изомерам лютеина относится фукоксантин (С 40 Н 60 О 6) - главный ксантофилл бурых водорослей.

Основные каротиноиды пластид высших растений и водорослей - Β-каротин, лютеин, виолаксантин и неоксантин. Синтез каротиноидов начинается с ацетил-СоА через мевалоновую кислоту, геранилгеранилпирофосфат до ликопина, который является предшественником всех других каротиноидов. Синтез каротиноидов происходит в темноте, но резко ускоряется при действии света. Спектры поглощения каротиноидов характеризуются двумя полосами в фиолетово-синей и синей области от 400 до 500 нм (см. рис. 4.3). Количество и положение максимумов поглощения зависят от растворителя. Этот спектр поглощения определяется системой конъюгированных двойных связей. При увеличении числа таких связей максимумы поглощения смещаются в длинноволновую область спектра. Каротиноиды, как и хлорофиллы, нековалентно связаны с белками и липидами фотосинтетических мембран.

Роль каротиноидов в процессах фотосинтеза

Каротиноиды - обязательные компоненты пигментных систем всех фотосинтезирующих организмов. Они выполняют ряд функций, главные из которых: 1) участие в поглощении света в качестве дополнительных пигментов, 2) защита молекул хлорофиллов от необратимого фотоокисления. Возможно, каротиноиды принимают участие в кислородном обмене при фотосинтезе.

Важное значение каротиноидов как дополнительных пигментов, поглощающих свет в синефиолетовой и синей частях спектра, становится очевидным при рассмотрении распределения энергии в спектре суммарной солнечной радиации на поверхности Земли. Как следует из рисунка 2, максимум этой радиации приходится на сине-голубую и зеленую части спектра (480 - 530 нм). В естественных условиях доходящая до поверхности Земли суммарная радиация слагается из потока прямой солнечной радиации на горизонтальную поверхность и рассеянной радиации неба.


Рис.2.Распределение энергии в спектре суммарной и рассеянной радиации при безоблачном небе

Рассеивание света в атмосфере происходит благодаря аэрозольным частицам (капли воды, пылинки и т. д.) и флуктуациям плотности воздуха (молекулярное рассеяние). Спектральный состав суммарной радиации в области 350 - 800 нм при безоблачном небе в течение дня почти не меняется. Объясняется это тем, что увеличение доли красных лучей в прямой солнечной радиации при низком стоянии Солнца сопровождается увеличением доли рассеянного света, в котором много сине-фиолетовых лучей. Атмосфера Земли в значительно большей степени рассеивает лучи коротковолновой части спектра (интенсивность рассеяния обратно пропорциональна длине волны в четвертой степени), поэтому небо выглядит голубым. При отсутствии прямого солнечного света (пасмурная погода) увеличивается доля сине-фиолетовых лучей. Эти данные указывают на важность коротковолновой части спектра при использовании наземными растениями рассеянного света и возможность участия каротиноидов в фотосинтезе в качестве дополнительных пигментов. В модельных опытах показана высокая эффективность переноса энергии света от каротиноидов к хлорофиллу а, причем этой способностью обладают молекулы каротинов, но не ксантофиллов.

Вторая функция каротиноидов - защитная. Впервые данные о том, что каротиноиды могут защищать молекулы хлорофилла от разрушения, были получены Д. И. Ивановским. В его опытах пробирки, содержащие одинаковый объем раствора хлорофилла и разные концентрации каротиноидов, выставлялись на 3 ч на прямой солнечный свет. Оказалось, что чем больше каротиноидов было в пробирке, тем в меньшей степени разрушался хлорофилл. В дальнейшем эти данные получили многочисленные подтверждения. Так, бескаротиноидные мутанты хламидомонады на свету в атмосфере кислорода погибают, а в темноте при гетеротрофном способе питания нормально развиваются и размножаются. У мутанта кукурузы, у которого отсутствовал синтез каротиноидов, образующийся хлорофилл в аэробных условиях при сильном освещении быстро разрушался. В отсутствие кислорода хлорофилл не разрушался.

Каким же образом каротиноиды препятствуют разрушению хлорофилла? В настоящее время показано, что каротиноиды способны реагировать с хлорофиллом, находящимся в триплетном состоянии, предотвращая его необратимое окисление. При этом энергия триплетного возбужденного состояния хлорофилла превращается в теплоту.

Рис.3. Реакция каротиноидов с хлорофиллом

Кроме этого каротиноиды, взаимодействуя с возбужденным (синглетным) кислородом, который неспецифически окисляет многие органические вещества, могут переводить его в основное состояние.

Рис.4. Реакция каротиноидов с возбужденным кислородом

Менее ясна роль каротиноидов в кислородном обмене при фотосинтезе. У высших растений, мхов, зеленых и бурых водорослей осуществляется светозависимое обратимое дезэпоксидирование ксантофиллов. Примером такого превращения может служить виолаксантиновый цикл.


Рис.5. Виолаксантиновый цикл

Значение виолаксантинового цикла остается невыясненным. Возможно, он служит для устранения излишков кислорода. Каротиноиды у растений выполняют и другие функции, не связанные с фотосинтезом. В светочувствительных «глазках» одноклеточных жгутиковых и в верхушках побегов высших растений каротиноиды, контрастируя свет, способствуют определению его направления. Это необходимо для фототаксисов у жгутиковых и фототропизмов у высших растений.

Каротиноиды обусловливают цвет лепестков и плодов у некоторых растений Производные каротиноидов - витамин А, ксантоксин, действующий подобно АБК, и другие биологически активные соединения. Хромопротеин родопсин, обнаруженный у некоторых галофильных бактерий, поглощая свет, функционирует в качестве Н + -помпы. Хромофорной группой бактериородопсина является ретиналь - альдегидная форма витамина А. Бактериородопсин аналогичен родопсину зрительных анализаторов животных.



К группе каротиноидов относят вещества, окрашенные в желтый или оранжевый цвет. Наиболее известные представители каротиноидов - каротины - пигменты, придающие специфическую окраску корням моркови, а также лютеин - желтый пигмент, содержащийся наряду с каротинами в зеленых частях растений. Окраска семян желтой кукурузы зависит от содержащихся в них каротинов и каротиноидов, получивших название цеаксантина и криптоксантина. Окраска плодов томaтa обусловлена каротиноидом ликопином. Каротиноиды играют большую роль в обмене веществ у растений, участвуя в процессе фотосинтеза.

Группа каротиноидов включает около 65-70 природных пигментов. Каротиноиды содержатся в большинстве растений (за исключением некоторых грибов). Вероятно, во всех животных организмах, но их концентрация почти всегда очень низка. Содержание каротиноидов в зеленых листьях составляет примерно 0,07-0,2 % при расчете на сухую массу листьев. В отдельных исключительных случаях наблюдается, однако, очень высокая концентрация каротиноидов. Например, в пыльниках многих видов лилий содержатся очень большие количества лютеина и каротиноида, называемого антераксантином. Одна из характерных особенностей каротиноидов - наличие в них значительного числа сопряженных двойных связей, образующих их хромофорные группы, от которых зависит окраска. Все натуральные каротиноиды могут рассматриваться как производные ликопина - каротиноида, содержащегося в плодах томатов, а также в некоторых ягодах и фруктах. Эмпирическая формула ликопина С40Н56 .

Путем образования кольца на одном или на обоих концах молекулы ликопина образуются его изомеры: альфа-, бета- или гамма-каротины. Сопоставляя формулы, можно заметить, что альфа-каротин отличается от бета-изомера положением двойной связи в одном из циклов, расположенных по концам молекулы. В отличие от альфа- и бета-изомеров гамма-каротин имеет только лишь один цикл.

Растения, богатые каротиноидами

Наиболее богаты каротинами зеленые части растений и корень моркови.

Природные каротиноиды - производные каротина и ликопина

Каротины являются веществами, из которых образуется витамин А. Поскольку ликопин и каротины содержат 40 углеродных атомов, они могут рассматриваться как образованные восемью остатками изопрена. Все без исключения другие природные каротиноиды - производные четырех указанных выше углеводородов: ликопина и каротинов. Они образуются из этих углеводородов путем введения: гидроксильных, карбонильных или метоксильных групп или же путем частичной гидрогенизации или окисления. В результате введения в молекулу бета-каротина двух оксигрупп образуется каротиноид, содержащийся в зерне кукурузы и называемый цеаксантином. С40Н56О2. Введение двух оксигрупп в молекулу альфа-каротина приводит к образованию лютеина С40Н56О2 (3,3-диокси-альфа-каротин), изомера цеаксантина, содержащегося наряду с каротинами в зеленых частях растений. В результате присоединения к молекуле бета-каротина одного атома кислорода с образованием фураноидной структуры получается каротиноид цитроксантин С40Н56О, содержащийся в кожуре цитрусовых плодов. Продуктами окисления каротиноидов, содержащих в молекуле 40 углеродных атомов, являются кроцетин С20Н2404, биксин С25Н30О4 и бета-цитраурин С30Н40О2. Кроцетин - красящее вещество, содержащееся в рыльцах крокуса в соединении с двумя молекулами дисахарида гентиобиозы в виде гликозида кроцина. Биксин - пигмент красного цвета, содержащийся в плодах тропического растения Bixa orellana; применяется для подкраски масла, маргарина и других пищевых продуктов. В бурых водорослях содержится каротиноид фукоксантин С40Н60О6, который принимает участие в процессе фотосинтеза в качестве так называемого вспомогательного пигмента.

Роль каротиноидов в организме человека

В организме животных и человека каротиноиды играют важную роль в качестве исходных веществ, из которых образуются витамины группы А, а также «зрительный пурпур», участвующий в зрительном акте. В растительном организме каротиноиды играют важную роль в процессе фотосинтеза. Исходя из химического строения каротиноидов, содержащих значительное количество двойных связей, можно предполагать, что они являются в растении переносчиками активного кислорода и принимают участие в окислительно-восстановительных процессах. На это указывает широкое распространение в растениях кислородных производных каротиноидов - эпоксидов, чрезвычайно легко отдающих свой кислород. Каротиноиды легко образуют перекиси, в которых молекула кислорода присоединяется по месту двойной связи и может затем легко окислять различные вещества.

Каротиноиды (от лат. сarota – морковь) – жирорастворимые растительные пигменты желтого, оранжевого, красного цвета, предшественники витамина А.

Эти витамины (группы А) не встречаются в растительных пищевых продуктах. Они содержатся исключительно в продуктах животного происхождения и образуются в организме животного из каротинов. Каротин представляет собой не индивидуальное вещество, а смесь трех изомеров: a-каротина, b-каротина и g-каротина. b-каротин составляет 85% этой смеси.

При гидролитическом расщеплении молекулы b-каротина на две симметричные половины образуются 2 молекулы витамина А (А 1).

b-КАРОТИН

Это превращение происходит в стенках кишечника под действием фермента каротиназы.

Каротины присутствуют во многих растениях, однако в качестве каротиноидного сырья представляют интерес лишь те растения, в которых каротины накапливаются в значительных количествах. Например, морковь, тыква служат промышленным сырьем для выделения каротина в чистом виде. Другие растения, богатые каротином, являются сырьем для получения суммарных препаратов (экстрактов) или используются в форме сборов, настоев, отваров.

Витамин А имеет большое значение в организации полноценного питания и сохранения здоровья человека и животных; он способствует нормальному обмену веществ, росту и развитию организма; обеспечивает нормальную деятельность органа зрения.

Многие растения (тыква, морковь, шпинат, салат, зеленый лук, красный перец, щавель, шиповник, черника, томаты и др.) содержат каротин, являющийся провитамином А. Суточная потребность в витамине А для взрослого человека составляет 0,4-0,7 мг, для детей – 1 мг.

Род. назв. Calendula, ae, f. – уменьшит. форма от лат. Calendae . Так римляне называли первый день каждого месяца. Calendula – это как бы маленькие календы, извещающие о начале дня: у растения соцветие раскрывается днем и закрывается на ночь.

Вид. опред. officinalis, e (аптечный, лекарственный) связано с лечебными свойствами растения.

Встречается под названиями календула.

Ноготки аптечные – культивируемое однолетнее травянистое растение. Все растение железистоопушенное, листья очередные удлиненно-обратнояйцевидные, корзинки одиночные, верхушечные. Цветки золотисто-желтые или оранжевые, крупные, до 5 см в диаметре. Цветки расположены в 2-3 ряда у немахровых и в 10-15 рядов у махровых форм. Плоды семянки, развиваются из краевых язычковых цветков, срединные – бесплодные (обоеполые) и производящие только пыльцу.



Химический состав

Ноготки цветут продолжительное время (более 2 месяцев), поэтому сбор цветков проводят многократно – с начала цветения до заморозков.

При ручном сборе цветочные корзинки обрывают без цветоноса или с цветоносом длиной до 3 см через каждые 3-4 дня в первый период цветения и через 4-6 дней в последующем. За сезон проводят 15-18 сборов – 12-18 ц/га. Собранное сырье очищают от примеси листьев, кусочков стеблей, отцветших корзинок.

Механизированную уборку проводят ромашкоуборочными комбайнами.

Сушат цветки ноготков в сушилках при температуре 50-60(70)°С, реже в воздушных сушилках, разложив на ткани или бумаге слоем в одно соцветие.

Стандартизация

Качество сырья регламентировано требованиями ГФ ХI (экстрактивных веществ, извлекаемых 70% спиртом, не менее 35%).

Лекарственное сырье

Цельные или частично осыпавшиеся корзинки диаметром до 5 см с остатками цветоносов не более 3 см. Обертка серо-зеленая, одно-двухрядная; листочки ее линейные, густоопушенные. Цветоложе слегка выпуклое, голое. Краевые цветки язычковые, длиной 15-28 мм. Срединные цветки трубчатые с пятизубчатым венчиком. Цвет краевых цветков красновато-оранжевый, ярко- или бледно-желтый; срединных – оранжевый, желтовато-коричневый или желтый.

Культивируют ноготки аптечные на Украине, в Молдове, вРеспублике Беларусь.

Хранение

Хранят цветки ноготков в сухих, хорошо проветриваемых помещениях на стеллажах. Срок годности сырья 2 года.



Основное действие . Антисептическое, бактерицидное, противовоспалительное.

Применение

Цветки ноготков применяют как ранозаживляющее, противовоспалительное и бактерицидное средство. Настой применяют как желчегонное, противовоспалительное при желудочно-кишечных заболеваниях и в виде инъекций при свищах; настойку – при ангине, гингивите, для уменьшения кровоточивости десен, в стоматологии для лечения парадонтоза, в терапии – кольпитов, эрозии шейки матки, проктитов; мазь и настойку – при ушибах, порезах, инфицированных ранах, ожогах, фурункулезе. Препарат Калефлон – при язвенной болезни желудка и двенадцатиперстной кишки, при хронических гастритах. Жидкий экстракт ноготков входит в состав комплексного препарата Ротокан , обладающий противовоспа­лительным действием, гемостатическими свойствами, усиливающий процессы регенерации слизистых оболочек. Ротокан – комплекс­ный препарат, в состав которого входят жидкие экстракты ромашки аптечной, тысячелистника и календулы.

Род. назв. Sorbus, i, f. как назв. растения встречается у многих римских авторов. Генетически слово связано с кельт. sor (терпкий) из-за вкуса плодов.

Вид. опред. aucuparia (aucuparius, a, um ) образовано от лат. aucupari (ловить птиц), т.к. плоды рябины применялись для ловли птиц.

Дерево высотой до 6 м, реже кустарник. Листья очередные, непарноперистые. Соцветия – густой щиток. Плоды яблокообразные, шаровидные, яркооранжевые, кислые, горьковатые, слегка вяжущие. Созревают в сентябре и обычно остаются на деревьях до глубокой осени или даже до начала зимы. Распространена почти по всей Европейской части СНГ, на Урале, Кавказе (в горах) и в Сибири. Рябина обыкновенная в Республике Беларусь встречается по всей территории, часто. Разводится как декоративное в садах и парках, вдоль шоссейных дорог.

Химический состав

Плоды рябины богаты каротиноидами, аскорбиновой кислотой (до 200мг %). Содержат витамины Р, В 2 , Е, сахара до 8%, флаво-ноиды, органические кислоты (3,9%), дубильные и горькие вещества; лактон-парасорбиновую кислоту, обладающую антибио-тическим действием, тритерпеновые соединения.

Заготовка, первичная обработка и сушка

Собирают зрелые плоды до заморозков (в августе – сентябре), срезая щитки с плодами, затем их отделяют и очищают от примеси веточек, листьев, плодоножек и поврежденных плодов.

Сушат сырье в сушилках при температуре 60-80°С, в сухую погоду можно сушить в хорошо проветриваемых помещениях, рассыпая тонким слоем на ткани или бумаге. Высушенные плоды не должны быть блеклыми или почерневшими, при сжатии образовывать комки.

Стандартизация

Качество сырья регламентировано ГФ ХI и ГОСТ 6714-74 (влажность не более 18%; золы общей не более 5%; органической примеси не более 0,5%; минеральной не более 0,2 %).

Лекарственное сырье

Согласно требованиям ГОСТа 6714-74, готовое сырье рябины состоит из плодов без плодоножек. Плоды ложные, ягодообразные («яблоко») 2-5-гнездные, округлые или овально-округлые. На верхушке плода видны остатки чашечки в виде пяти малозаметных зубчиков, смыкающихся своими верхушками в центре. В мякоти плода находятся от 2 до 7 слегка серповидноизогнутых, продолговатых, с острыми концами, гладких красновато-бурых семян. Цвет плодов красновато-оранжевый, буровато-красный или желтовато-оранжевый. Запах слабый, свойственный рябине, вкус кисловато-горький.

Хранение

На складах плоды рябины хранят в хорошо проветриваемых помещениях на стеллажах. Срок годности 2 года.

Основное действие . Поливитаминное.

Применение

Плоды рябины – поливитаминное сырье с высоким содержанием b-каротина. Свежие ягоды перерабатывают на витаминный сироп, сухие входят в состав поливитаминных сборов. Засахаренные плоды рябины и варенье из них – диетический продукт, полезный для профилактики и лечения цинги и других авитаминозов. Их можно в перспективе рассматривать как сырье для получения масляного экстракта каротиноидов рябины.

Род. назв. Hippophae, es, f. (греч. hippophaes ) как назв. растения встречается у Диоскорида, у других греч. ученых и писателей. Слово образовано от греч. hippos (лошадь) и phaоs, eos (свет, блеск). Такую этимологию объясняют тем, что в Древней Греции облепихой лечили лошадей, и их шерсть приобретала красивую, блестящую окраску.

Вид. опред. rhamnoides, is (досл. «крушиновидный») образовано от греч. rhamnos (колючий кустарник, крушина) и oides (видный) и связано с тем, что растение представляет собой колючий кустарник. Плоды у растения сидят на коротких плодоножках, как бы облепляя ветви, и отсюда русское «облепиха».





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта